
By

Multi Tenant
SaaS Architecture

 on AWS

 Building a

page. 1

www.clickittech.com info@clickittech.com +52 (844) 141-8485

SaaS applications are the new normal

nowadays, and software providers

are looking to transform their web

applications into a Software As a Ser-

vice application. For this, the only

solution is to build a Multi tenant

Architecture SaaS Application.

Introduction
Multi tenant Architecture SaaS
Application on AWS

The next points are what we will explore in a Multi tenant architecture for your SaaS

application, and my contributions will be:

1. Multi tenant architecture benefits

2. SaaS Technology stack for an Architecture on AWS

3. Which Multi tenant architecture suits better for your SaaS Application on AWS?

4. Types of Multi tenant SaaS architectures: Application Layer

5. Types of Multi tenant SaaS Architecture: Database layer

6. Application Code Changes

7. In a nutshell for Python Django

8. Wildcard DNS Subdomain – URL based SaaS application.

9. Web Server Setup – Nginx configuration to support Multi tenant SaaS applica-

tions.

10. Follow the 12-factor methodology framework or die trying!

11. What are the Multi-tenant SaaS architecture best practices?

12. Conclusions

Index

 Multi tenant Architecture is a Sof-

tware Architecture that runs multiple

single instances of the software on a

single physical server, which serves

multiple tenants. Multitenancy is ano-

ther common term for this practice in

which multiple tenants shared the

memory of a server, dynamically allo-

cated and cleaned up as needed.

page. 2

www.clickittech.com info@clickittech.com +52 (844) 141-8485

I will start with this impressive fact: 70%

of all web applications are considered

SaaS applications according to IDC Re-

search.

 70% of all Web Apps are SaaS

This research is intended to showcase

an overview of the strategies, challen-

ges and constraints that DevOps and

Software Developers are likely to face

when architecting a SaaS multi-tenant

application.

Have you ever wondered how Slack,

Salesforce, AWS (Amazon Web Services),

and Zendesk can serve multiple organiza-

tions? Does each one have its unique and

custom cloud software per customer? For

example, have you ever noticed that, on

Slack, you have your own URL ‘com-

pany.slack.com’? You probably thought

that in the background, they created a

particular environment for your organiza-

tion, –application or codebase–, and thin-

king that slack customers have their own

server/app environment. If this is you,

you might have assumed that they have a

repeatable process to run thousands of

apps across all their customers. Well,

definitely No. And the real solution is a

Multi tenant architecture SaaS appli-

cation on AWS.

If you know about SaaS architectu-

re and multi-tenant, you are proba-

bly covering 70% of the web applica-

tion architecture landscape that

would be available in the future.

Multi tenant
Architecture page 13

https://company.slack.com/

Tenant = Organization / Client / Customer

User = a user inside a tenant. A tenant/Or-
ganization can have multiple, and even,
thousands of users.

Tenant / Organization

Users Users Users

page. 3

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Multi tenant architecture benefits:1
The adoption of a Multi tenant archi-

tecture approach will bring extensive

valuable benefits for your SaaS appli-

cation.

Let’s dive into the next contributions:

 a) A Reduction of server Infras-

tructure costs utilizing a Multi

tenant architecture strategy. Ins-

tead of creating a SaaS applica-

tion/environment per customer, you

include one application environment

for all your customers. This enables

your AWS hosting costs to be dramati-

cally reduced from hundreds of ser-

vers to a single environment.

 b) One single source of trust.Let’s

say again you have a customer using

your SaaS, imagine how many code

repositories you would have per cus-

tomer? At least 3-4 branches per cus-

tomer and this would be a lot of over-

head, misaligned code releases. Even

worse, visualize the process of deplo-

ying your code to the entire farm of

tenants; it is extremely complicated.

This is unviable and time-consuming.

With a multi tenant SaaS architec-

ture, you avoid this type of conflict,

where you’ll have one codebase

(source of trust), and a code reposi-

tory with a few branches (dev/tes-

t/prod). By following below practices,

–with a single command

(one-click-deployment)–, you will quic-

kly perform the deployment process

in a few seconds.

page. 4

www.clickittech.com info@clickittech.com +52 (844) 141-8485

 c) Cost reductions of Development and time to market. Having a single

codebase, SaaS application environment, multi tenant database architecture,

centralized storage and APIs, and following the 12-factor methodology; all this will

allow you to reduce development labor costs, time to market, and operational

efficiencies.

What is a Multi Tenant Architecture?1.1
First of all, you need to understand

what a single tenant architecture and

a Multi tenant architecture is. Single

Tenant vs Multi Tenant: SaaS Architectu-

re.

A single-tenant architecture (siloed

model) is a single architecture per

organization where the application

has its own infrastructure, hardware,

and software ecosystem. Let’s say you

have ten organizations; in this case,

you would need to create ten standa-

lone environments, and your SaaS

application or company will function

as a single tenant architecture. Addi-

tionally, it implies more costs, more

maintenance, and a level of difficulty

to update across the environments.

Multi-tenant architecture is an

ecosystem or model, in which a single

environment can serve multiple

tenants utilizing a scalable, available,

and resilient architecture. The underl-

ying infrastructure is completely

shared, logically isolated, and with

fully centralized services. The mul-

ti-tenant architecture evolves accor-

ding to the organization or subdo-

main (organization.saas.com) that is

logged into the SaaS application; and

is totally transparent to the end-user.

Bear in mind that in this paper, we

will discuss two Multi tenant architec-

ture models, one for the application

layer and one for the database layer.

Quickly Scale Your Business with
a DevOps Team Let’s Start!

https://www.clickittech.com/laravel/use-the-twelve-factor-app/
https://www.clickittech.com/contact/
https://www.clickittech.com/saas/single-tenant-multi-tenant/

page. 5

www.clickittech.com info@clickittech.com +52 (844) 141-8485

 Multi-Tenant

SaaS application SaaS application

App

Org1

DB

App

Org2

DB VS
Org1

DB

Cluster

Org3

Org2

Org4

App

Docker

App

Docker

App

Docker

Load Balancer

Org1 Org2 Org3

Single-Tenant

Single Tenant vs Multi tenant

page. 6

www.clickittech.com info@clickittech.com +52 (844) 141-8485

SaaS Technology stack for an
Architecture on AWS

To build a multi tenant architecture,

you need the correct AWS web stack,

including OS, language, libraries, and

services to AWS technologies. This is

just the first step towards creating a

next-generation multi tenant architec-

ture.

In case you haven’t chosen your web

stack, hereafter, I’ll suggest you the

ideal AWS SaaS stack. Even though we

will surface a few other multi tenant

architecture best practices. This arti-

cle will be primarily oriented to this

AWS SaaS web stack.

Let’s dive into our SaaS Technology

Stack on AWS:

Programming language: It doesn’t

really matter which language plat-

form you select. What is vital is that

your application can scale, able to

utilize Multi tenant architecture best

practices, cloud-native principles, and

a well-known language by the

2

open-source community. The latest

trends to build SaaS applications are

Python + React + AWS. Another “va-

riant” is Node.js + React + AWS, but in

the end, the common denominators

are AWS and React. Probably, if you

are a financial company, ML/AI, with

complex Algorithms or backend work,

go for Python. On the other hand, if

you are using modern technologies

like real-time chats, mini feeds, strea-

ming, etc.; then go for Node.js. There

is a market in the banking sector that

is leveraging Java, but that’s for esta-

blished enterprises. Any new SaaS

application better goes with the men-

tioned web stack. Again, this is just

what I’ve noticed as a trend, and what

the community is demanding.

Note: This data comes from a survey
that we performed a few months ago for
Financial Services and SaaS companies.

Ideal languages:

page. 7

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Cloud Provider: As a team of DevOps

experts, I’ve noticed a cloud variation

in the last two years, and which

corresponds to these percentages:

70% of our DevOps implementations

are based on AWS, 25% with Azure,

and 5% go to GCP and Digital ocean.

Each year the trend is similar, with the

exception that Azure is gradually

growing with the years. Those are not

only my words but also ideas suppor-

ted by multiple DevOps Partners. So, I

strongly recommend deploying your

SaaS application under AWS. It has a

number of benefits; every day there is

a new service available for you, and a

new feature that facilitates your deve-

lopment and deployment.

Microservices: If you are planning to

leverage the cloud, you must leverage

cloud-native principles. One of these

principles is to incorporate microser-

vices with Docker. Make sure that

your SaaS application is under micro-

services, which brings multiple bene-

fits, including flexibility and standardi-

zation, easier to troubleshoot, pro-

blems isolation, and portability. Just

like the cloud, Docker and microservi-

ces have transformed the IT ecosys-

tem and will stay for a long while.

Container orchestration platform:

This is a complicated and abstract

decision; there are three options in

AWS to manage, orchestrate, and

create a microservice cluster environ-

ment.

First of all, did you know that you can’t perform the digital
transformation without the AWS Cloud? Over here, you’ll be
able to find more details about Why Build SaaS on AWS.

Why Build SaaS on AWS?

Python Node Js Java React Go

https://www.clickittech.com/devops/aws-cloud-digital-transformation/
https://www.clickittech.com/nearshore/cloud-native-application/

page. 8

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Amazon ECS. It is the

natural Amazon contai-

ner orchestration

system in the AWS ecosystem.

(Highly recommended for startups,

small SaaS, and medium SaaS).

Amazon EKS. It is a

managed service that

makes Kubernetes on

AWS easy to manage. Use Amazon

EKS instead of deploying a Kuber-

netes cluster on an EC2 instance,

set up the Kubernetes networking,

Amazon Fargate.

Almost Serverless, price,

and management is per

task. Minimal operational effort vs.

ECS. There are some studies con-

ducted by our DevOps team; in

terms of performance. Fargate can

be slower than ECS, so for this parti-

cular case, I would recommend

Amazon ECS, instead of Fargate.

Another thought is that if your team

is pure developers and not planning

to hire a DevOps engineer, perhaps

Fargate is the way to go.

Amazon Elastic
Container Service

AWS Fargate

and worker nodes. (Recommended

for large SaaS apps and a sophistica-

ted DevOps and web development

Team).

Amazon
EKS

Which is the best? What shall you

use? In this blog, I explain the main

differences, pros, and cons of Kuber-

netes vs Amazon ECS; which is the best

container orchestration? Or watch

our video below.

Kubernetes vs Amazon
ECS: Best Container

Orchestration

Watch here

Looking for a hint? In the end, we chose
Amazon ECS

Database. The inherent database will

be PostgreSQL with Amazon RDS.

However, I strongly recommend that

if you have a senior development

team, and are projecting a high-traffic

for your SaaS application, –or even

hundreds of tenants–, you’d better

architect your database with Mongo-

DB. In addition to this, utilize the best

practices that will be mentioned

below about Multi tenant Database.

In this case, I would go for Amazon

RDS with PostgreSQL or DynamoDB

(Mongodb).

https://www.clickittech.com/aws/kubernetes-vs-amazon-ecs/
https://www.youtube.com/watch?v=DXZUOUF6oFw&t=16s
https://www.clickittech.com/

page. 9

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Note: I didn’t include this service in the
AWS stack architecture diagram, because
it is implemented in multiple ways, and it
would require an in-depth explanation on
this topic.

Database. The inherent database will

be PostgreSQL with Amazon RDS.

However, I strongly recommend that

if you have a senior development

team, and are projecting a high-traffic

for your SaaS application, –or even

hundreds of tenants–, you’d better

architect your database with Mongo-

DB. In addition to this, utilize the best

practices that will be mentioned

below about Multi tenant Database.

In this case, I would go for Amazon

RDS with PostgreSQL or DynamoDB

(Mongodb).

 If you are projecting a
high-traffic for your SaaS
application, you’d better
architect your database
with MongoDB

GraphQL or Amazon AppSync. Is a

query language and an alternative to

a RESTful API for your database servi-

ces. This new and modern ecosystem

is adopted as a middleman among

the client and the database server. It

allows you to retrieve database data

faster, mitigate the over-fetching in

databases, retrieve the accurate data

needed from the GraphQL Schema,

and mainly the speed of development

by iterating more quickly than a REST-

ful service. Adopting a monolithic

backend application into a Multi

tenant microservice architecture is

the perfect time to leverage GraphQL

or AppSync. Hence, when transfor-

ming your SaaS application, don’t

forget to include GraphQL!

Automation. You need a mechanism

to trigger or launch new tenants/or-

ganizations and attach it to your multi

tenant SaaS architecture. Let’s say

you have a new client that just subs-

cribed to your SaaS application, how

do you include this new organization

inside your environment, database,

and business logic? You need an

automated process to launch new

tenants; this is called Infrastructure

as Code (IaC). This script/procedure

should live within a git/bitbucket

repository, one of the fundamental

DevOps principles. A strong argument

to leverage Automation and IaC is

that you need a mechanism to auto-

mate your SaaS application for your

code deployments. In the same lines,

automate the provisioning of new

Infrastructure for your Dev/Test envi-

ronments.

page. 10

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Infrastructure. As Code and Automa-

tion Tools

It doesn’t matter which one to use,

they are both highly known by the

DevOps community, as well as useful

and do the same job. I don’t have a

winner, they are both good.

Terraform (from Hashi-

corp). A popular Cloud-ag-

nostic tool. Used widely for

all DevOps communities. Easier to

find DevOps with this skill.

Amazon CloudFormation.

Easier to integrate with

Amazon Web services,

AWS built-in Automation tool. Whene-

ver there is a new Amazon technology

just released, the compatibility with

AWS and CloudFormation is released

sooner than Terraform. Trust on an

AWS CloudFormation expert to automa-

te and release in a secure manner.

Terraform

AWS
CloudFormation

Message Queue System (MQS)

The common MQS are Amazon SQS,

RabbitMQ, or Celery. What I suggest

here is to utilize the service that

requires you less operation, in this

case, is Amazon SQS. There are multi-

ple times that you need asynchro-

nous communication. From delaying

or scheduling a task, to increasing

reliability and persistence with critical

web transactions, decoupling your

monolithic or micro-service applica-

tion, and, most importantly: using a

Queue System to communicate

Event-driven Serverless applications

(Amazon Lambda functions).

Caching System. AWS ElastiCache is

a caching and data storage system

that is fully scalable, available, and

managed. It aims to improve the

application performance of distribu-

ted cache data and in-memory data

structure stores. It’s an in-memory

key-value store for Memcached and

Redis engines. With a few clicks, you

can run this AWS component entirely

self-managed. It is essential to include

a caching system for your SaaS appli-

cation.

Release Products Faster with
our Nearshore DevOps Team Let’s Start!

https://www.clickittech.com/news/aws-service-delivery/
https://www.clickittech.com/contact/

page. 11

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Amazon CloudFront CDN and

Amazon S3 for your static content

All static content, including images,

media and HTML, will be hosted on

Amazon S3, –the cloud storage with

infinite storage and elasticity. In front

of Amazon S3, we will include AWS

CloudFront to cache the entire static

content and reduce bandwidth costs.

Integrating this pair of elements is

vital.

2.1 SaaS Multi tenant web stack architecture
and diagram on AWS (Amazon Web Services).

https://www.clickittech.com/aws/upload-file-amazon-s3-laravel/

page. 12

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Which Multi tenant architecture suits
better for your SaaS Application on AWS?

3

4

4.1 SaaS Monolithic architecture for Multi tenant SaaS applications

Waste of AWS resources.

Not very fault-tolerant per service.

If the app tier goes down, the

whole backend is down.

When deploying your code, you

have to deploy all your services

within the app-tier, and not just

with a specific isolated service.

Not flexible to maintain.

Slows time to market.

HIPAA and PCI compliance cons-

traints.

Cons:

It is paramount to decide which multi

tenant architecture you’ll incorporate

in your SaaS application from the

application and database layer. We

will explore the two layers needed to

enable your application to act as a

real SaaS application.

As a side note, we will discuss two

types of multi tenant architecture:

Application layer Multi-tenancy and

Database layer Multi-tenancy.

Types of Multi tenant SaaS
architectures: Application Layer

Probably, if you haven’t seen this

article before, –or if you have already

developed and architected your own

SaaS application–, I’m sure you have

fallen into this approach. The monoli-

thic components include EC2 instan-

ces in the web tier, app tier, and

Amazon RDS with MySQL for your

Database. The monolithic architectu-

re is not a bad approach, with the

exception that you are wasting

resources massively in the mentioned

tiers. At least around 50% and 70% of

your CPU/RAM usage is wasted due

to the nature of the monolithic

(cloud) architecture.

page. 13

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Easy-to-build approach.

Minimal configuration.

Multi tenant database.

Pros:

Multi tenant architecture example:
Monolithic diagram

page. 14

www.clickittech.com info@clickittech.com +52 (844) 141-8485

4.2. Microservices Multi tenant
Architecture for SaaS with containers
and Amazon ECS.

4.2

Microservices are a recommended

type of architecture since they provide

a balance between modernization and

maximum use of available cloud

resources (EC2 instances and compute

units). As well as it introduces a

decomposed system with more granu-

lar services (microservices). We won’t

touch much about the Microservice

benefits since it’s widely expressed

in the community. However, I’ll

recommend you to utilize the formula

of Multi-tenant architecture + AWS

Services + microservices + Amazon

ECS as the container orchestrator;

they can be the perfect match. Mainly,

consider that Amazon ECS gives fewer

efforts to configure your cluster and

more NoOps for your DevOps team.

With a talented team, the best Mul-

ti-tenant architecture approach would

be this use case scenario. Along the

same lines, it covers the SaaS software

and architecture’s main attributes,

including agility, innovation, repeata-

bility, reduced cycle time, cost efficien-

cy, and manageability.

 By 2022, 90% of all new apps will feature microservices archi-
tectures that improve the ability to design, debug, update, and
leverage third-party code; 35% of all production apps will be
cloud-native.

- Forbes, 2019

The perfect match
Multi tenant architecture + AWS Services + microservices + Amazon ECS

(as the container orchestrator).

https://www.forbes.com/sites/louiscolumbus/2018/11/04/idc-top-10-predictions-for-worldwide-it-2019/#2b53d18f7b96

page. 15

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Adds a key DevOps principle:
Loosely coupled architecture.
Easier to deploy new code to pro-
duction.
Helps perform smaller deploy-
ment per microservice. Better
agility.
Pure and real distributed service.
Repeatability and manageability.
A much better level of resources
utilization than monolithic.

Pros: Cons:
A decent grade of complexity to
create the microservices archi-
tecture and the ECS clustering.
Amacon ECS natively lives in the
AWS cloud; and you can't port
this service into another cloud
provider due to it is a proprietary
service from AWS.

Multi tenant Architecture example:
for SaaS with microservices.

AWS Cloud

VPC

User Devices Internet

Cloudfront Distribution

Application
Load Balancer

ECS Cluster

S3 Media

Public subnet

Private subnet

Private subnet

Public subnet

ECR
Docker Registry

Postgre SQL
Organization 1

Postgre SQL
Organization N

EC2 instance contents
Organization1

Microservice
A

Microservice
B

Microservice
C

EC2 instance contents
Organization N

Microservice
A

Microservice
B

Microservice
C

page. 16

www.clickittech.com info@clickittech.com +52 (844) 141-8485

SaaS Kubernetes: Multi-tenant
architecture with Kubernetes
(Amazon EKS)

4.3

You might be wondering… what about

Kubernetes or Amazon Kubernetes

Service (EKS)? Well, Kubernetes is ano-

ther alternative of microservice archi-

tecture which adds an extra layer of

complexity in the SaaS equation.

However, you can overcome this com-

plexity by leveraging Amazon EKS (The

Managed Kubernetes service from

Amazon), which is a de facto service by

the Kubernetes community.

So, how would a Kubernetes Multi-te-

nant architecture look like? The inte-

resting part of this component from

the rest of the architectures is that it

provides the use of namespaces. This

attribute aids to isolate every tenant

and its own environment within the

corresponding Kubernetes cluster. In

this sense, you don’t have to create

different clusters per each tenant (you

could, but for another approach). Also,

by using ResourceQuota you can limit

the resources used per namespace

and avoid creating noise to the other

tenants. Another point to consider is

that if you would like to isolate your

namespaces, you need to include Ku-

bernetes Network policies because by

default the networking is open, and

can communicate across namespaces

and containers.

Here is a comparison of Amazon ECS vs

Kubernetes. You can also visit our you-

tube channel and watch a video that

compares and declares which is the

Best Container. Alternatively, –if you

have a SaaS enterprise–, I’ll recom-

mend better to control your microser-

vice via Amazon EKS or Kubernetes

since it allows you to have more gra-

nular changes.

https://www.clickittech.com/aws/kubernetes-vs-amazon-ecs/
https://www.clickittech.com/aws/kubernetes-vs-amazon-ecs/
https://www.youtube.com/watch?v=DXZUOUF6oFw&t=13s

page. 17

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Same pros as the microservices
architecture with Amazon ECS
Exceptional in-depth custom
SaaS configuration.
Used more by enterprise SaaS
companies.

Pros:

Cons:
The classic, a higher learning
curve vs Amazon ECS.
A Re-architecture of your SaaS
application.

 Kubernetes Multi-tenant SaaS
Architecture diagram

User Devices Internet

AWS Cloud

VPC

Application
Load Balancer

Amazon
Kubernetes

Service Ingress Controller
NGINIX

Public subnet Public subnet

Private subnet

Private subnet

Private subnet

Private subnet

DB
Organization 1

Namespace Organization 1 Namespace Organization N

DB
Organization N

EC2 Worker Node

EC2 Master Node
Control Plane

Containers

EC2 Worker Node

Containers

* A simple Multi-tenant architecture with
Kubernetes and siloed by Kubernetes
Namespaces.

page. 18

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Serverless Multi tenant SaaS
Architecture

4.4

Truly based on consumption by
milisecs/secs.
End-to-end serverless applica-
tion.
A microservice per each event
call.

Pros:

Cons:
You need to refactor the entire
application into a Serverless
ecosystem
It adds much more complexity
than previous architectures.

No need to worry about scalabili-
ty, downtime, or availability. It is
all built-in in the serverless
ecosystem.
Serverless simplifies much more
the deployments per function.

A Serverless SaaS architecture enables

applications to obtain more agility,

resilience, and fewer development

efforts, a truly NoOps ecosystem.

At a high level, what are the new parts

of this next-generation serverless

SaaS architecture? Every call becomes

an isolated tenant call, either going to

a logical service (Lambda function) or

going to the database data coming

from the Amazon API Gateway as an

entry point in the serverless SaaS

application. Now that you have decou-

The dream of any AWS architect is to

create a Multi tenant SaaS architecture

with a Serverless approach. That’s a

dream that can come true as a DevOps

or SaaS architect, but it especially adds

a fair amount of complexity as a tra-

deoff. Additionally, it requires a reaso-

nable amount of time of collaboration

with your dev team, extensive applica-

tion of code changes, and a transfor-

mative Serverless mindset. Given said

that, anyhow in a few years, it will be

the ultimate solution, and all de-

pends on the talent, capabilities,

and use case.

Serverless is disrupting the IT stack, and

you still on-premises? Go through this

paper I created a few months ago

which shows more details about the

serverless ecosystem.

pled every logical service, the authenti-

cation and authorization module

needs to be handled by a third-party

service like Amazon Cognito, which will

be the one to identify the tenant, user,

tier, IAM tenant role, and bringing back

an STS token with these aspects. Parti-

cularly API Gateway will route all

tenant functions to the correct

lambda functions matching the STS

Token.

https://www.clickittech.com/devops/serverless-aws-lambda/

page. 19

www.clickittech.com info@clickittech.com +52 (844) 141-8485

A Serverless SaaS architecture enables

applications to obtain more agility,

resilience, and fewer development

efforts, a truly NoOps ecosystem.

At a high level, what are the new parts

of this next-generation serverless

SaaS architecture? Every call becomes

an isolated tenant call, either going to

a logical service (Lambda function) or

going to the database data coming

from the Amazon API Gateway as an

entry point in the serverless SaaS

application. Now that you have decou-

pled every logical service, the authenti-

cation and authorization module

needs to be handled by a third-party

service like Amazon Cognito, which will

be the one to identify the tenant, user,

tier, IAM tenant role, and bringing back

an STS token with these aspects. Parti-

cularly API Gateway will route all

tenant functions to the correct

lambda functions matching the STS

Token.

Multi tenant architecture example:
For SaaS with Serverless.

AWS Cloud

InternetOrganization 1 Organization N

Cloudfront Distribution
(Cache/ CDN)

Api Gateway
(Endpont Proxy)

Lamba Application

Postgre SQL
DB

Storage

Login

Lambda Call
Tenant1

Lambda Call
Tenant N

User Product Cart

S3
Media/Reports

Cognito
(Request Authorizer)

Node js Python Ruby

page. 20

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Types of Multi tenant SaaS Architecture:
Database layer

5

Single database: A table per tenant
(pure multi-tenancy and pooled model).

5.1

The multi-tenancy concept comes with

different architecture layers. We have

already advocated the multi-tenancy

application layer and its variants. Now,

it is time to explore multi-tenancy in

the Database layer, which is another

aspect to discover. Paradoxically, the

easiest and cost-effective Multi-tenant

database architecture is the pure and

real database multitenancy.

As a next step, you need to evaluate

what Multi tenant database architec-

ture to pursue with tables, schemas,

or a siloed database.

The following multi-tenant databa-

se architectures can be distingui-

shed as:

This database architecture is the

common and the default solution by

DevOps or software architects. It is

very cost-effective when having a

small startup or with a few dozen orga-

nizations. It consists of leveraging a

table per each organization within a

database schema. There are specific

trade-offs for this architecture, inclu-

ding the sacrifice of data isolation,

noise among tenants, and performan-

ce degradation -meaning that one

tenant can overuse compute and ram

resources from another. Lastly, every

table name has its own tenantID,

which is very straightforward to

design and architect.

Alternative single-tenant database

architecture: a Shared table in a

single schema in a single schema in a

single database. Perfect for Dynamo-

DB. (We didn’t cover this approach -

FYI)

page. 21

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Pros:
Lowest cost per tenant.
The easiest architecture to scale
your database. (However, you
have always a limit).
Great approach for hundreds/-
thousands of tenants.

Cons:
Hard to troubleshoot a single-te-
nant per table.
Hard to backup and restore a
single tenant per table.
Reaching the single database
limits, it becomes extremely
difficult to control.
Low tenant isolation.

Single Database: A schema per
tenant (bridge model).

5.2

This Multi-tenant database approach

is still very cost-effective and more

secure than the pure tenancy (DB

pooled model), since you are with a

single database, with the exception of

the database schema isolation per

tenant. If you are concerned about

data partitioning, this solution is

slightly better than the previous one

(Single/pooled DB, a table per tenant).

Similarly, it is simple to manage

across multiple schemas in your appli-

cation code configuration. One impor-

tant distinction to notice is that with

more than 100 schemas or tenants

within a database, it can provoke a lag

in your database performance.

Hence, it is recommended to split the

database into two (add the second

database as a replica). However, the

best database tool for this approach

is PostgreSQL, which supports multi-

ple schemas without much complexi-

ty. And lastly, this strategy of –a

schema per tenant– shares resources,

compute, and storage across all its

tenants. As a result, it provokes noisy

tenants that utilize more resources

than expected.

page. 22

www.clickittech.com info@clickittech.com +52 (844) 141-8485

A database server (instance) per tenant
Siloed model (expensive, but the best
for isolation and security compliance).

5.3

Architect your SaaS App with AWS Let’s Start!

Pros:
Low development complexity.
This pattern is best used for a
few dozens of schemas.
More secure vs single database
(A table per tenant).
You can customize specific sche-
mas per tenant. A Different ver-
sion per schema.
Scales horizontally.

Cons:
It doesn’t comply with PCI/HI-
PAA/Fedramp regulations.
However, if you dont need them,
who cares?
Can get slower by the fact that
loading a specific schema can be
an expensive operation.
Medium tenant isolation.
Updating a database structure
would need an update to all
schemas.

Cons:
Low development complexity.
High tenant and data isolation.
Widely used and accepted by the
customer.

This technique is significantly more
costly than the rest of multi-tenant
database architectures, but it com-
plies with security regulations; the
best for performance, scalability, and
data isolation. This pattern uses one
database server per tenant, it means
if the SaaS app has 100 tenants, the-
refore there will be 100 database
servers, extremely costly.

 When PCI, HIPAA or SOC2 is needed,
it is vital to utilize a database siloed

model, or at least find a workaround
with the correct IAM roles, the best
container orchestration –either Kuber-
netes or Amazon ECS namespaces–, a
VPC per tenant and encryption
everywhere.

Once you have selected your Multi

tenant strategy in every layer, let’s

start considering what is needed to

change in the code level, in terms of

code changes. If you have decided to

adopt Django (from Python) for your

SaaS application. Then you need a

few tweak changes to align your

current application with your Multi-te-

nant architecture from the database

and application layer. Fortunately,

web application languages and fra-

meworks are able to capture the URL

or subdomain that is coming from the

request. The ability to obtain this

information (subdomain) at runtime

is critical to handling dynamic subdo-

mains for your Multi-tenant architec-

ture. We won’t cover in-depth what

lines of codes we need to include in

your Django application –or in any

other framework–, but at least I’ll let

you know what items should be con-

sidered in this section.

https://www.clickittech.com/contact/

page. 23

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Cons:
Highest costs per tenant.
Complex to manage N database
servers (hard management).
Hard to scale to more than 100
servers??
Scales vertically.

Tools for a Multi tenant Database
architecture:

GraphQL. As described
previously, use it in front of
any of these databases to
increase speed on data

retrieval, speed on development, and
alternative to RESTful API, which helps
to relieve requests from the backed
servers to the client.

Amazon RDS
with PostgreSQL

Amazon RDS with
PostgreSQL (best option).

Amazon RDS with
Mysql

DynamoDB (great option).

Dynamo DB

Amazon RDS
with MySQL

GraphQL

Application Code Changes.6
Once you have selected your Multi

tenant strategy in every layer, let’s

start considering what is needed to

change in the code level, in terms of

code changes. If you have decided to

adopt Django (from Python) for your

SaaS application. Then you need a

few tweak changes to align your

current application with your Multi-te-

nant architecture from the database

and application layer. Fortunately,

web application languages and fra-

meworks are able to capture the URL

or subdomain that is coming from the

request. The ability to obtain this

information (subdomain) at runtime

is critical to handling dynamic subdo-

mains for your Multi-tenant architec-

ture. We won’t cover in-depth what

lines of codes we need to include in

your Django application –or in any

other framework–, but at least I’ll let

you know what items should be con-

sidered in this section.

page. 24

www.clickittech.com info@clickittech.com +52 (844) 141-8485

1 Add an app called tenant.py, a class for tenantAwareModel with multiple
pool classes.

2 How to identify tenants? You need to give each tenant a subdomain; to
do so, you need to modify a few DNS changes, Nginx/Apache tweaks, and
add a utility method (utils.py). Now, whenever you have a request, you can
use this method to get the tenant.

3 Determine how to extract the tenant utilizing the host header (subdo-
main).

4 Admin isolation.

Note: Previous code suggestions can change depending on the architecture.

In a nutshell for Python Django:7

Wildcard DNS Subdomain – URL
based SaaS application.

8

Basically, every organization must

have its own subdomain, and they are

quite useful for identifying organiza-

tions. Per tenant, it is a unique dedica-

ted space, environment, and custom

application (at least logically); for

example, ‘org1.saas.com’, ‘org2.saas.-

com’, and so on. This URL structure

will dynamically provision your SaaS

multi-tenant application, and this

DNS change will facilitate the identifi-

cation, authentication, and authoriza-

tion of every tenant. However, ano-

ther workaround is called path-based

per tenant, which is not recommen-

ded, for example, ‘app.saas.-

com/org1/…’, ‘app.saas.com/org2…’,

and so on.

page. 25

www.clickittech.com info@clickittech.com +52 (844) 141-8485

So, the following is required in this
particular section:

A wildcard record should be in

place in your DNS management

records.

This wildcard subdomain redi-

rects all routes to your Multi-te-

nant architecture (either to the

load balancer, application server

or cluster end-point).

Similarly, a CNAME record labeled

(*) pointing to your ‘app.saas.com’

or ‘saas.com/login’. An asterisk (*)

means a wildcard to your app

domain.

As a final step, another (A) record

pointing your ‘app.saas.com’

domain to your amazon ECS clus-

ter, ALB, or IP.

Web Server Setup - Nginx configuration
to support Multi tenant SaaS applications.

9

Let’s move down to your web server,

specifically Nginx. In this stage, you

will need to configure your Nginx.conf

and server blocks (virtual hosts). Set

up a wildcard vhost for your Nginx

web server. Make sure it is an alias

(ServerAlias) and a catch-all wildcard

site. You don’t have to create a sub-

* .saas.com CNAME ‘app.saas.com

app.saas.com A 1 .2 .3 .4 OR app.saas.com A (a l ias)

balancer.us- east-1 .e lb.amazonaws.com

DNS Records entries:

Note: An (A) Alias record is when you are utilizing an ALB/ELB (Load Balancer)
from AWS.

domain VirtualHost in Nginx per

tenant; instead, you need to set up a

single wildcard VirtualHost for all your

tenants. Naturally, the wildcard pat-

tern will match your subdomains and

route accordingly to the correct and

unique patch of your SaaS app docu-

ment root.Let’s move down to your

web server, specifically Nginx. In this

stage, you will need to configure your

Nginx.conf and server blocks (virtual

hosts). Set up a wildcard vhost for

your Nginx web server. Make sure it is

an alias (ServerAlias) and a catch-all

wildcard site. You don’t have to create

a subdomain VirtualHost in Nginx per

tenant; instead, you need to set up a

single wildcard VirtualHost for all

your tenants. Naturally, the wildcard

pattern will match your subdomains

and route accordingly to the correct

and unique patch of your SaaS app

document root.

SSL Certificates. Just don’t forget to

deal with the certificates under your

tenant subdomains. You would need

to add them either in the Cloudfront

CDN, Load balancer, or in your web

server.

page. 26

www.clickittech.com info@clickittech.com +52 (844) 141-8485

Follow the 12-factor methodology
framework or die trying!

10

Let’s move down to your web server,

specifically Nginx. In this stage, you

will need to configure your Nginx.conf

and server blocks (virtual hosts). Set

up a wildcard vhost for your Nginx

web server. Make sure it is an alias

(ServerAlias) and a catch-all wildcard

site. You don’t have to create a sub-

domain VirtualHost in Nginx per

tenant; instead, you need to set up a

single wildcard VirtualHost for all your

tenants. Naturally, the wildcard pat-

tern will match your subdomains and

route accordingly to the correct and

unique patch of your SaaS app docu-

ment root.Let’s move down to your

web server, specifically Nginx. In this

stage, you will need to configure your

Nginx.conf and server blocks (virtual

hosts). Set up a wildcard vhost for

your Nginx web server. Make sure it is

an alias (ServerAlias) and a catch-all

wildcard site. You don’t have to create

a subdomain VirtualHost in Nginx per

tenant; instead, you need to set up a

single wildcard VirtualHost for all

your tenants. Naturally, the wildcard

pattern will match your subdomains

and route accordingly to the correct

and unique patch of your SaaS app

document root.

SSL Certificates. Just don’t forget to

deal with the certificates under your

tenant subdomains. You would need

to add them either in the Cloudfront

CDN, Load balancer, or in your web

server.

Note: This solution can be accom-
plished using Apache web server.

Following the 12-factor methodology

represents the pure DevOps and

cloud-native principles, including

immutable infrastructure, dev/test

and prod parity with Docker, CI/CD

principles, stateless SaaS application,

and more.

Willing to know more about the

12-factor methodology? This article

deeply explains how to adopt the

12-factor methodology for any SaaS

application on AWS.

https://www.clickittech.com/laravel/use-the-twelve-factor-app/
https://www.clickittech.com/laravel/use-the-twelve-factor-app/

www.clickittech.com info@clickittech.com +52 (844) 141-8485

page. 27

Build a Multitenant Architecture
for SaaS Let’s Start!

What are the Multi-tenant SaaS
architecture best practices?

11

11.1. SaaS architecture Best practices for your
multi tenant application:

How is your SaaS application going to scale?

You should consider a strategy on how to scale your SaaS application.
Here is a good Scaling strategy to follow:

1 Amazon AutoScaling, either with ec2 instances or microservices.

2 Database replication with Amazon RDS, Amazon Aurora or DynamoDB.

3 Application Load Balancer.

4 Including a CloudFront CDN for your static content.

5 Amazon S3 for all your static/media content.

6 Caching system including Redis/Memcached or its equivalent in the
AWS cloud – Amazon ElastiCache.

7 Multi-availability zone set up for redundancy and availability.

More details here on how to scale a SaaS Application.

https://www.clickittech.com/contact/
https://www.clickittech.com/laravel/use-the-twelve-factor-app/

www.clickittech.com info@clickittech.com +52 (844) 141-8485

page. 28

Tools for the automation:

Terraform (Recommended)

Amazon CloudFormation

(Trust on an AWS CloudForma-

tion certified team).

Ansible.

Note: Ensure you utilize Infrastructure As
Code principles in this aspect.

Code Deployments with CI/CD

(application updates across tenant

apps). Another crucial aspect to con-

sider is how to deploy your code

releases across tenants and your

multiple environments (dev, test, and

prod). You will need a Continuous

Integration and Continuous Delivery

(CI/CD) process to streamline your

code releases across all environments

and tenants. If you follow-up on my

previous best practices, it won’t be

difficult. The CI/CD practice is another

world that your DevOps team needs

to get familiar with, but with a team

like us on ClickIT. CI/CD is just one of

the five principles of DevOps practi-

ces, it is pretty lean for us to adopt it

into your SaaS application. Ready to

go?

What tools to embrace CI/CD?

CI/CD tools: Jenkins, CircleCi, or AWS

Code pipelines (along with Codebuild

and CodeDeploy).

If you are looking for a sophisticated DevOps team and widely known tool, go for
Jenkins; otherwise, go for CircleCI. If you want to keep leveraging AWS technologies
exclusively… Then go for AWS Code pipelines. But, if you’re looking for compliance,

banks, or regulated environments, Go for Gitlab.

My advice

DevOps Automation: Automate your

new tenant creation process

How are you creating new tenants

per each subscription? Identify the

process of launching new tenants into

your SaaS environment. You need to

trigger a script to launch or attach the

new Multi tenant environment to

your existing Multi-tenant architectu-

re, meaning to automate the setup of

new tenants. Consider that it can be

after your customer gets registered in

your onboarding page, or you need to

trigger the script manually.

www.clickittech.com info@clickittech.com +52 (844) 141-8485

page. 29

Take in mind the next aspects:

IAM Roles per function or
micro services.

Amazon S3 security policies.

VPC isolation.

Amazon ECS / Kubernetes
Namespace isolation.

Database isolation (tenant per
table/schema/silo database)

How your architecture will be isola-
ted from other tenants: Siloed com-
pute and siloed storage

Just identify the next: Every layer of

the SaaS application needs to be iso-

lated. The customer workflow is tou-

ching multiple layers, pages, backend,

networking, front-end, storage, and

more bits – How is your isolation stra-

tegy?

Tenant compute capacity – Have
you considered how many SaaS
tenants can it support per environ-
ment?

Tenant clean-up.

What are you doing with the tenants

that are idle or not used anymore?

Perhaps a clean-up process for any

tenant that has been inactive for a

prolonged period, or remove unused

resources/tenants by hand, but you

need a process or automation script.

Just think, you have 99 tenants, com-

pute/database load is almost to the

limits, do you have a ready environ-

ment to support the new tenants?

What about the databases? You have

a particular customer that wants an

isolated Tenant environment for its

SaaS application. How would you

support an extra Tenant environ-

ment, separated from the rest of the

multi-tenant architecture? Would you

do it? What are the implications? Just

consider a scenario for this aspect.

www.clickittech.com info@clickittech.com +52 (844) 141-8485

page. 30

Conclusions 12

Multi tenant architecture and SaaS

applications under AWS… What a topic

that we just discovered! Now you un-

derstand the whole Multi tenant SaaS

architecture cycle from end-to-end,

including server configuration, code,

and what architecture pursues per

every IT layer. As you can notice, there

is no global solution for this ecosys-

tem. There are multiple variants per

each IT layer, either all fully multi-te-

nant, partially tenant or just silo

tenants. It falls more on what you

need, budget, complexity, and the

expertise of your DevOps team.

I strongly recommend going for micro-

services (ECS/EKS), partially multi

tenant SaaS in the app, and database

layer. As well, include cloud-native

principles, and finally, adopt the mul-

ti-tenant architecture best practices

and considerations described in this

article. That being said, brainstorm

your SaaS architecture firstly by thin-

king on how to gain agility, cost-effi-

ciency, IT labor costs, and leveraging a

nearshore collaboration model (which

adds another layer of cost-savings).

If you ever need a hand on how to

architect your SaaS application, execu-

te the whole AWS/DevOps projects

and follow these principles, or just

hire a DevOps engineer to fulfill your

DevOps needs, just contact us. We

help enterprises run successfully their

DevOps embracement. Read more

about the voice of our customers.

ClickIT is an AWS Select Partner with

multiple AWS Certifications. Every

engineer on ClickIT loads more than

10 DevOps projects based on SaaS

architectures and cloud-native appli-

cations including PHP Laravel, React,

Angular, NodeJS, Python, Go, Ruby,

and Java. In the DevOps space, we

work with any cloud provider (Azure,

AWS, Digital Ocean, and Google

Cloud), with any CI/CD, including Jen-

kins, CircleCI, bitbucket, and more.

In regard, Automation with Terraform

and CloudFormation is our best

choice. And even better, most of our

AWS/DevOps projects are following

PCI, HIPAA, and SOC2 regulations. If

you are a fintech, healthcare, or SaaS

company, well, you know this type of

requirement should be included in

your processes. In case you’re looking

to learn more about DevOps practices

and SaaS applications, don’t hesitate

and visit our YouTube Channel to

learn more through videos.

https://www.clickittech.com/devops/nearshore-devops-outsourcing/
https://clutch.co/profile/clickit-smart-technologies
https://partners.amazonaws.com/partners/001E000000uiD2UIAU/ClickIT%20Smart%20Technologies

www.clickittech.com info@clickittech.com +52 (844) 141-8485

page. 31

About ClickIT
ClickIT is an experienced Cloud and DevOps Nearshore Solution Provider for 10

years. Our competencies are Financial Services, Healthcare, MarTech, Ecommerce,

Big Data & Analytics and our Experience comes with startups and mid-large enter-

prises. We are AWS and GCP certified partners with an experience of helping more

than 200 product and service-centric companies based out of the US with their

cloud migration and DevOps initiatives.

Implement the migration of
your host in the AWS Contact Us!

Multi tenant architecture and SaaS

applications under AWS… What a topic

that we just discovered! Now you un-

derstand the whole Multi tenant SaaS

architecture cycle from end-to-end,

including server configuration, code,

and what architecture pursues per

every IT layer. As you can notice, there

is no global solution for this ecosys-

tem. There are multiple variants per

each IT layer, either all fully multi-te-

nant, partially tenant or just silo

tenants. It falls more on what you

need, budget, complexity, and the

expertise of your DevOps team.

I strongly recommend going for micro-

services (ECS/EKS), partially multi

tenant SaaS in the app, and database

layer. As well, include cloud-native

principles, and finally, adopt the mul-

ti-tenant architecture best practices

and considerations described in this

article. That being said, brainstorm

your SaaS architecture firstly by thin-

king on how to gain agility, cost-effi-

ciency, IT labor costs, and leveraging a

nearshore collaboration model (which

adds another layer of cost-savings).

If you ever need a hand on how to

architect your SaaS application, execu-

te the whole AWS/DevOps projects

and follow these principles, or just

hire a DevOps engineer to fulfill your

DevOps needs, just contact us. We

help enterprises run successfully their

DevOps embracement. Read more

about the voice of our customers.

ClickIT is an AWS Select Partner with

multiple AWS Certifications. Every

engineer on ClickIT loads more than

10 DevOps projects based on SaaS

architectures and cloud-native appli-

cations including PHP Laravel, React,

Angular, NodeJS, Python, Go, Ruby,

and Java. In the DevOps space, we

work with any cloud provider (Azure,

AWS, Digital Ocean, and Google

Cloud), with any CI/CD, including Jen-

kins, CircleCI, bitbucket, and more.

In regard, Automation with Terraform

and CloudFormation is our best

choice. And even better, most of our

AWS/DevOps projects are following

PCI, HIPAA, and SOC2 regulations. If

you are a fintech, healthcare, or SaaS

company, well, you know this type of

requirement should be included in

your processes. In case you’re looking

to learn more about DevOps practices

and SaaS applications, don’t hesitate

and visit our YouTube Channel to

learn more through videos.

Select Consulting Partner

AWS CloudFormation Select Partner

AWS Solutions Architect Associate

AWS Developer Associate

https://www.clickittech.com/contact/
https://www.facebook.com/clickittech/
https://twitter.com/ClickIT_Tech
https://www.linkedin.com/company/clickittech/
https://www.youtube.com/channel/UCFNSJV7uuvCmW2BRe-xvZWQ

